IMPRESA E COMPETIZIONE KNOWLEDGE - BASED

XIII RIUNIONE SCIENTIFICA
Impresa e Competizione Knowledge-based

XIII Riunione Scientifica

Volume 2
INDICE

Introduzione. .................................................................  i
Romano Aldo

Innovazione e imprese high-tech. ........................................ iii
Cuomo Andrea

Attività d'impresa e mercati finanziari nell'era della conoscenza. .......... xv
Finocchiaro Antonio

Il knowledge management sincronizzato.
La sincronizzazione tra Persone, Processi e IT. ................................ xvii
Heisig Peter

Recenti approcci alla strategic entrepreneurship. ................................ xxi
Romano Aldo

Cooperation and competition within industrial districts:
an agent-based computational approach. ........................................ 1
Albino Vito, Carbonara Nunzia, Giannoccaro Ilaria

Analisi dell’e-service fornito dalle aziende erogatrici di servizi pubblici a rete. .... 27
Ancarani Alessandro

La misura delle prestazioni come strumento di cambiamento:
il caso delle amministrazioni pubbliche italiane. .................................. 43
Arnaboldi Michela, Azzone Giovanni

Simulazione di aste combinatorie:
un approccio basato su modelli di agenti razionali. ............................... 63
Avenali Alessandro, Bassanini Anna

B2b eMarketplace Revolution:
a strategic framework and its application in the Italian market. ............... 83
Balocco Raffaello, Catti Paolo, Rangone Andrea

L'attività brevettuale degli enti pubblici di ricerca in Italia, Francia e Spagna. .... 103
Balzano Mauro, Cesaroni Fabrizio, Piccaluga Andrea
Internet supporting the procurement process: lessons from four case studies. ........................................... 133
Bartezzaghi Emilio, Ronchi Stefano

Outsourcing e knowledge management: strategie per il coordinamento della conoscenza e delle competenze nell’impresa estesa. .................................................. 159
Becker Markus C., Caputo Mauro, Zirpoli Francesco

Commercio elettronico e piccole e medie imprese: opportunità e vincoli tecnologici. .................................................. 183
Benetti Ilario, Scarso Enrico

Reti sociali ed efficacia dei gruppi. .................................................. 205
Bertolotti Fabiola, Tagliavento Maria Rita, Fonti Fabio

Informativa aziendale, stime reddittuali e analisi finanziaria: il ritorno delle ‘Convergenze Parallele’. .................................................. 225
Bertoni Fabio, Giudici Giancarlo, Randone Pier Andrea Rorai Umberto

L’intermediazione cognitiva nell’economia digitale: tipologie e modelli di business. .................................................. 247
Bolisani Ettore, Scarso Enrico

La gestione della conoscenza nelle organizzazioni non-profit: risultati da una analisi esplorativa. .................................................. 273
Borga Francesca, Lettieri Emanuele, Savoldelli Alberto

Piccole imprese innovative nei paesi in via di sviluppo: il caso dell’industria del software off-shore in Nord Africa. ............... 295
Bruno Giuseppe, Esposito Gianluca, Tandoli Luca

La competizione nei mercati dell’intermediazione informativa: il caso dei repertori telefonici. .................................................. 321
Buzzacchi Luigi, Cambini Carlo

Technological, organizational and managerial tools for knowledge management supporting dispersed workers. ....................... 349
Cainarca Giancarlo, Corso Mariano, De Canitis Gianluca, Martini Antonella, Massa Silvia, Neirotti Paolo, Paolucci Emilio, Pavesi Sara, Pellegrini Luisa, Testa Stefania
Ricerca accademica, specializzazione tecnologica
e performance innovativa dei sistemi industriali locali:
un'analisi empirica delle interazioni nel settore Wireless. ........................................ 375
Calderoni Mario, Scellato Giuseppe

Il ruolo e le attività di un servizio brevetti nell'ambito del trasferimento
tecnologico tra l'università e il tessuto industriale locale:
l'esperienza del politecnico di Milano. ................................................................. 409
Campodall'Orto Sergio, Conti Giuseppe

L'approccio basato sulle opzioni reali nella determinazione
del valore delle competenze. ................................................................. 425
Cannavacciuolo Lorella, Ponsiglione Cristina, Zollo Giuseppe,
Di Lucchio Francesca, Ippolito Massimo

La costruzione di sistemi per la rilevazione delle competenze: il caso ACI. ... 449
Capaldo Guido, Iandoli Luca, Zollo Giuseppe

Aspetti metodologici nella rilevazione delle competenze nelle piccole
e medie imprese: implicazioni per l'analisi dei fabbisogni formativi. .... 475
Capaldo Guido, Iandoli Luca, Raffa Maria, Zollo Giuseppe

Progetti di knowledge management:
strumenti per la gestione delle prestazioni di impresa. ......................... 497
Cartucci Daniela, Schiuma Giovanni

Strategie multicanale delle aziende bancarie: approcci e soluzioni operative. ... 523
Colarossi Fabrizio, Giorgino Marco, Viviani Diego

Misure di performance dell'offerta di servizi finanziari on line: un modello di scorino. ................................................................. 549
Colarossi Fabrizio, Giorgino Marco, Viviani Diego

Entrepreneurs’ Human Capital, Financial Constraints, and The Start-up Size of New Technology-Based Firms. ......................... 575
Colombo Massimo G., Delmastro Marco, Grilli Luca

Knowledge management configurations in SMEs.
Results of an empirical analysis. ................................................................. 599
Corso Mariano, Martini Antonella, Paolucci Emilio, Pellegrini Luisa
Un’analisi empirica delle relazioni tra le determinanti della generazione di conoscenza nel problem-solving dell’attività innovativa.
Il caso delle piccole imprese produttrici di macchine per l’industria agro-alimentare della Campania. .............................................. 623

Corti Eugenio, Io Storto Corrado

La valutazione dell’innovazione tecnologica ed organizzativa nel servizio sanitario italiano: il caso di cinque centri ospedalieri della Campania. ................. 649

Corti Eugenio, Marino Alfonsino

Analisi e progettazione di e-supply chain: una procedura operativa. ......... 669

Caputo A.C., Cucchiella F., Fratocchi L., Pelagagge P.M., Scavina F.

Innovazione tecnologica, cambiamenti organizzativi e formazione continua:
un’analisi sui progetti ex legge 236/93. .............................................. 687

De Cantis Gianluca, Nroti Paolo

Dal sistema tradizionale di rifornimento al continuous replenishment:
un caso studio del settore elettrodomestico. .............................................. 707

De Toni Alberto Felice, Zanolo Elena

Le fonti di trust negli spazi economici digitali.
Community, reputation e ruolo delle istituzioni. .............................................. 727

Di Bili Giacomo

Supplier selection using a multicriteria decision aid method. ..................... 743

Dulmin Riccardo, Mininno Valeria

Regional innovation in the Digital Economy:
search for an holistic conceptual framework. .............................................. 767

Elia Valerio, Martinazzo Mario

Evoluzione delle ICTs: il ruolo del personal computer. ............................. 781

Exposito Emilio, Mastroiani Michele

Da unità di servizi in un gruppo multinazionale ad azienda profit oriented
Il change management nei processi deliberati di spin-off. ......................... 801

Fratocchi Luciano, Malentiacchi Massimo, Presutti Manuela

Un modello competence-based per la valutazione delle performance dei processi organizzativi. .............................................. 821

Garavelli A. Claudio, Gorgoglione Michele, Lollino Marcello
Approcci agent-based per l’allocazione della capacità produttiva nelle virtual factories. ........................................ 841
Lo Nigro Giovanna, Bruccheleri Manfredi,
Noto La Diega Sergio, Perrone Giovanni

Proprietà intellettuale e politiche di regolamentazione in presenza di arbitraggio internazionale. ........................................ 859
Matteucci Giorgio, Reverberi Pierfrancesco

Complexity management and supply chain performance assessment. A field study and a conceptual framework. ........................................ 879
Miragliotta Giovanni, Sacca\textsubscript{\textregistered} Nicola

Intellectual capital measurement systems: a critical review. ........................................ 899
Moustaghfir Karim, Ventura Stefania

I modelli di e-business emergenti nel B2B. ........................................ 931
Noci Giuliano, Ostinelli Massimiliano

A meta-analytic study of the relationship between R&D investments and corporate value. ........................................ 971
Oriani Raffaella, Sobrero Maurizio

Exploring relationships existing between virtualness, knowledge management and firm’s strategy. ........................................ 999
Petti Claudio, Passante Giuseppina

Modelli di diffusione delle ICT nei distretti industriali Il ruolo delle imprese leader. ........................................ 1021
Ragazzi Elena, Rolfo Secondo

Il ruolo dei parchi nella creazione di NTBFs: un’indagine empirica comparata. ........................................ 1045
Ressico Alessandra

Modelling a technological platform enabling organisational knowledge creation process. ........................................ 1071
Secundo Giustina, Elia Gianluca, Carella Roberto, Corallo Angelo

Modularity choices and the organizational design of new product development projects. Evidence from the Italian packaging industry. ........................................ 1093
Zamarian Marco, Munari Federico, Sobrero Maurizio
Towards an organisational-based method in the km system design.

Verderamo Saverino, Migliarese Piero
DAL SISTEMA TRADIZIONALE DI RIFORNIMENTO AL CONTINUOUS REPLENISHMENT: UN CASO STUDIO DEL SETTORE ELETTRODOMESTICO

Alberto Felice De Toni, Elena Zamolo

Dipartimento di Ingegneria Elettrica, Gestionale e Meccanica,
Università degli Studi di Udine,
via delle Scienze 208, 33100 Udine- Italy

Abstract
Il paper proposto evidenzia come il Continuous Replenishment si configuri come una delle principali soluzioni proposte dall' Efficient Consumer Response nell'ambito dell' Efficient Replenishment per gestire la catena di distribuzione non solo nell'originale settore del grocery, ma anche in quello degli elettrodomestici. Attraverso lo studio del caso Electrolux Italia viene infatti presentata ed analizzata l'implementazione di tale tecnica, evidenziando i vari processi coinvolti (sales forecasting, capacity need forecasting, master planning, replenishment need calculation, dispatch planning, shipping), i parametri (target stock, replenishment need, dispatch plan, assigned stock, ecc.) e gli algoritmi che regolano il Continuous Replenishment. Il paper evidenzia inoltre i risultati e i benefici ottenuti dopo l'implementazione di tale tecnica e propone un tentativo di estrapolare dal caso le variabili che definiscono e caratterizzano le condizioni di applicabilità della tecnica presentata.

Keywords:
Continuous Replenishment, Inventory Management, Supply Chain Management.

1. Introduzione
L'evoluzione del mercato odierno e il cambiamento dei ruoli e del potere all'interno della filiera hanno trasformato la competizione tra aziende in una competizione tra intere supply chain. Orientare la strategia verso un miglioramento delle performance del canale rappresenta per le aziende la strada obbligata per raggiungere un incremento del vantaggio competitivo.
In letteratura si è affermato il concetto di Supply Chain Management, le cui prime applicazioni sono state realizzate nel settore tessile attorno ai primi anni '80 note come Quick Response. Tale approccio innovativo è stato poi recepito anche nel
La letteratura non fornisce numerosi studi ed analisi di casi aziendali di applicazione di tale tecnica e quelli presenti hanno riguardato principalmente il settore tessile, alimentare e grocery. Nonostante vi siano degli ostacoli alla diffusione del CR, legati da un lato ad investimenti volti a raggiungere un'elevata integrazione tra i partner, dall'altro al raggiungimento di una massa critica di scambio e alla distanza spaziale tra le parti, tale tecnica ha forti potenzialità di applicazione in settori diversi da quello grocery, da cui si è sviluppata, ed essere estesa anche ai nodi a monte della supply chain. L'evoluzione del settore degli elettrodomestici ripropone in parte le medesime problematiche affrontate nel settore grocery (Cardinali, 1999) e quindi rappresenta un buon terreno per la diffusione di tale approccio innovativo. Il caso aziendale proposto ne è un tentativo. Esso evidenzia come questi principi ECR siano stati recepiti anche nel settore degli elettrodomestici. Tra le azioni intraprese dal gruppo Electrolux per migliorare l'efficienza e le performance dell'intera supply chain, particolare rilevanza e successo ha ottenuto la sostituzione del tradizionale sistema di rifornimento con il Replenishment, nome con cui il gruppo ha coniato tale modello di gestione dei rifornimenti che segue la logica del Continuous Replenishment. Tale sistema è stato implementato dapprima per gestire i
riformenti con le società commerciali e poi esteso con la stessa logica anche a monte della supply chain per gestire i rifornimenti con i fornitori. Dopo aver presentato i meccanismi, gli algoritmi e i parametri che regolano il Replenishment tra stabilimento produtore e società commerciali, si evidenzia come il successo di tale adozione abbia permesso al gruppo Electrolux-Zanussi di estendere tali principi anche a monte del canale, coinvolgendo stabilimento produtore e fornitori. L'analisi e il confronto dei risultati ottenuti prima e dopo l'implementazione del CR in particolare modo dallo stabilimento di Poncia permette di confermare la validità della tecnica e il raggiungimento degli obiettivi teorici proposti dall'ECR. Il paper propone infine un tentativo di estrapolare dal caso le variabili che definiscono e caratterizzano le condizioni di applicabilità della tecnica presentata.

2. Meccanismi e processi del Replenishment verso le società commerciali

La filosofia che ispira il metodo del Replenishment verso le società commerciali (SC) è il concetto “pull”: la fabbrica e la produzione devono essere trainate dal mercato, dal suo andamento, dalla sua stagionalità, ovvero dalle vendite effettive delle SC. Queste ultime mettono a disposizione della fabbrica una serie di informazioni relative al loro portafoglio ordini, al loro livello di stock, alle previsioni di vendita e la fabbrica provvede a garantire la copertura di un certo livello di stock di sicurezza (target stock-TAS). Stessa logica sta alla base del processo di Replenishment adottato tra stabilimento produttivo e fornitore: quest'ultimo cercherà di ristabilire un certo livello di scorte di componenti o sottoassisten concordato (TAS) calcolato in base alle effettive richieste del mercato. In questa sede verrà focalizzata l'analisi sul processo di Replenishment verso le SC. Come si può notare dalla Figura 3 con questo approccio acompagnano gli ordini veri e propri effettuati dalle SC verso gli stabilimenti produttivi; inoltre la pianificazione delle quantità da spedire alle società commerciali grazie al Target Stock consente di livellare i picchi di assorbimento permettendo a sua volta, nonostante vengano seguite efficacemente le richieste del mercato, un livellamento della produzione.
Il gruppo Electrolux conta numerosi impianti produttivi e varie società commerciali sparsi in tutto il mondo; questo giustifica la scelta del gruppo di dotarsi di un sistema informativo affidabile e che permetta la trasmissione dei dati a livello mondiale. Tale sistema utilizzato è chiamato Electrolux Forecasting and Supply System (EFS-95), funzionante su piattaforma hardware I.B.M. AS/400. Attraverso tale sistema società commerciali e stabilimenti produttivi condividono dei master data contenenti informazioni sui codici, prezzi e caratteristiche generali dei prodotti. Tali dati vengono raggruppati in un comune database che viene aggiornato dagli stabilimenti produttivi. All'interno del sistema del Replenishment è possibile individuare i seguenti processi schematizzati nella Figura 4.

**Figura 3. - Il processo di Replenishment verso le società commerciali**

**Figura 4. - Processi coinvolti nel Replenishment**
Il processo del *SALES FORECASTING* viene realizzato presso la società commerciale. Esso fornisce una previsione sull'andamento futuro delle vendite, usando dati storici che comprendono vendite storiche, campagne promozionali e i customer orders. Esistono due livelli di previsione: uno per gestire il lungo periodo e uno per gestire il breve periodo. Le prime definiscono i fabbisogni mensili della SC in termini di macroaggregati coprendo il periodo di un anno. Tali previsioni rappresentano l'input del processo del *CAPACITY NEED FORECASTING* in cui vengono definite le previsioni di produzione nel medio-lungo periodo e valutata quindi la capacità produttiva richiesta. Tali dati vengono condivisi con la SC e utilizzati nel processo successivo di *MASTER PLANNING*. Qui vengono definiti e programmati con maggior dettaglio la capacità produttiva degli impianti, la necessità di eventuali manutenzioni, il fabbisogno di risorse umane e di materiali. Questi ultimi dati vengono trasmessi ai fornitori che sono quindi in grado di pianificare la propria capacità produttiva. Tale processo, così come quello precedente, non considera alcun dato relativo alle scorte, in quanto prevede una proiezione anticipata delle vendite future e il relativo adeguamento della capacità produttiva senza alcun riferimento alla disponibilità a magazzino.

Le previsioni di breve periodo invece sono definite su base settimanale per ogni codice e coprono un periodo di 12 settimane. Esse rappresentano l'input per il processo di *REPLENISHMENT NEED CALCULATION* in cui viene calcolata, per ogni codice, la quantità di merce da spedire in un determinato giorno alla società commerciale, così da ripristinare il livello di gianchezza prefissato e permettere in questo modo di coprire un determinato percorso di vendita. Gli input per il calcolo sono dati dal piano di vendite, dal livello di scorte presso la società commerciale, dagli ordini dei retailer, inviati quotidianamente, e dalle sales forecast, inviate settimanalmente. Nel prossimo paragrafo verranno specificati con maggior dettaglio logiche e algoritmi utilizzati in tale processo. A partire dal valore del RN, viene determinata dalla fabbrica produttrice la quantità di ogni singolo codice da inviare alla SC operando un calcolo a capacità finita, ovvero viene considerata la disponibilità a magazzino e il piano di produzione. Si valuta cioè se esiste o meno la disponibilità per coprire il Replenishment Need considerando da un lato il piano produttivo e dall'altro la disponibilità di prodotti in quel dato periodo, ricavata attraverso il sottoprocesso dell'Analisi della Disponibilità. Nel caso in cui questa disponibilità non riesca a coprire tutte le richieste, viene ripartita dal sistema proporzionalmente tra le varie società commerciali. Il modello prevede un periodo congelato di produzione (frozen produttivo) di due settimane, che rappresenta un orizzonte temporale in cui i piani di produzione non possono subire ulteriori modificazioni, e, se vi è la necessità, un periodo congelato di distribuzione (frozen distributivo) di una settimana, in cui il piano di spedizioni (Dispatch Plan-DIP) non può essere variato. Ovviamente durante il frozen produttivo il DIP viene confermato e per le settimane seguenti viene calcolato solo il Replenishment Need.
Nel processo di ANALISI DELLE DISPONIBILITA' viene analizzata la disponibilità di prodotto presente presso lo stabilimento produttivo (GSU) per confermare il RN calcolato. A tale scopo viene operata una proiezione del livello di scorte a magazzino presso la fabbrica fino al termine del frozen produttivo (GSU\textsubscript{projected}), considerando quindi lo stock presso lo stabilimento a inizio periodo frozen (GSU\textsubscript{current}), a cui si aggiungono le quantità derivanti dal piano di montaggio dello stesso periodo (P.Montaggio), nettificate dalle quantità del Dispatch Plan pianificato nel frozen produttivo (DIP).

GSU\textsubscript{projected} = GSU\textsubscript{current} + P.Montaggio – DIP

Infine nel processo di SHIPPING, prodotte o prelevate le quantità del DIP, esse vengono spedite alle società commerciali. Appena la spedizione ha avuto luogo, viene emesso un Dispatch Advice che da un lato permette di aggiornare il valore delle scorte in transito dalla fabbrica alla SC (GIT-Good In Transit-), dall'altra permette alle società commerciali di prepararsi alla ricezione della merce. Ricevuta la merce, la sales company invia un Arrival Advice che permette di aggiornare nuovamente il GIT ed avvisare la fabbrica dell'avvenuta ricezione dei prodotti.

Il modello logico del Replenishment, poc'anzi descritto, è stato definito in maniera generale dal Gruppo Electrolux. Le peculiarità e le esigenze diverse dei flussi dei singoli stabilimenti produttivi richiedono infatti che ogni realtà adatti tale modello alle proprie necessità, pur rispettando la logica e le fasi in cui si articolano. Di seguito verranno presentati gli algoritmi che regolano la fase centrale del processo di Replenishment, ovvero la determinazione delle quantità da inviare alle società commerciali, ovvero il piano di spedizione, considerando l'implementazione di questi nello stabilimento Electrolux di Porcia.

3. Applicazione del modello di Replenishment nello stabilimento Electrolux di Porcia (Italia)
Lo stabilimento produttivo Electrolux di Porcia ha iniziato l'implementazione del modello di Replenishment nel 1998, adattandolo alle proprie necessità e vincoli. La fabbrica utilizza il sistema EFS-95 come interfaccia con le proprie società commerciali, da cui riceve i dati di input, mentre il calcolo del Replenishment Need e del DIP, fasi centrali di tutto il processo, vengono realizzate con un sistema locale preesistente.

3.1 Parametri e algoritmi utilizzati nel Replenishment Need Calculation
TARGET STOCK (TAS): il calcolo del Replenishment Need inizia dalla definizione del Target Stock (TAS); esso rappresenta il mezzo con cui assorbire eventuali fluttuazioni impreviste delle vendite fino al successivo arrivo della merce. La
fabbrica ha quindi il compito di pianificare le forniture in maniera da garantire nel magazzino della SC tale livello in funzione ai fabbisogni previsti. Stabilimento produttivo e società commerciale accordano il valore del TAS in giorni (TASgg), che rappresenta il numero di giorni di copertura della disponibilità a magazzino. Tale valore viene determinato in funzione al grado di affidabilità delle previsioni di ogni codice (fissato infatti un determinato livello di servizio, al diminuire dell’affidabilità delle previsioni, aumenta il livello di scorte di sicurezza), dalla fiducia e dall’affidabilità delle forniture e dalla frequenza del rifornimento.

Per determinare il livello di scorta presso la società commerciale che la fabbrica deve assicurare, viene calcolato, a partire dal TASgg, il suo equivalente in pezzi sulla base dei fabbisogni del cliente calcolati valutando un predefinito orizzonte di

$$\sum_{i=1}^{n} forecast(i) \div n \times g \times TASgg$$

dove: $TASpz$ è il Target Stock in pezzi; $TASgg$ è il Target Stock in giorni; $forecast(i)$ è la previsione di vendita del periodo i-esimo; $n$ è il numero di settimane dell’orizzonte temporale (generalmente fissato a 4); $g$ è il numero di giorni di vendita (fissato a 7); $\sum_{i=1}^{n} forecast(i) / n \times g$ è la previsione di vendita media giornaliera nel periodo considerato.

Il sistema calcola il TASpz per le 12 settimane rolling; risulta quindi necessario per lo stabilimento disporre dei dati di input dei fabbisogni relativi alle 16 settimane successive (nell’ipotesi di $n=4$).

L’obiettivo comune della fabbrica e della sales company è quello ovviamente di ridurre il livello di scorte e quindi il TAS. Mentre le variazioni nel tempo della domanda dipendono dal mercato e quindi non sono direttamente controllabili, è possibile agire aumentando sia l’affidabilità della fornitura, sia l’accuratezza delle previsioni di vendita da parte della sales division e inoltre incrementando la frequenza di rifornimento.

REPLENISHMENT NEED (RN): il Replenishment Need rappresenta la quantità che lo stabilimento produttivo deve inviare alla società commerciale in modo tale che il livello di scorta della SC nel momento di arrivo della merce equaglia il livello del TAS calcolato per quel dato periodo (Figura 5)

$$RN_i = TAS_i + Requirement_i - (GSC + GIT)_{current}$$

dove: $GSC_{current}$ è il livello attuale delle giacenze presso la società commerciale; $GIT_{current}$ è la merce in transito che arriverà nella SC; $Requirement$ è il fabbisogno relativo al periodo considerato ovvero il valore massimo tra le previsione di vendita e la somma dei back order e degli ordini dei clienti.
Re quirement \(_i = \max\{\text{forecast}_i, (\text{Custom erOrders}_i + \text{BackOrders}_i)\}\)
dove: Back Orders rappresentano la quantità di merce non ancora evasa.

Figura 5. - Andamento delle scorte

**DISPONIBILITÀ**: attraverso il processo di analisi delle disponibilità, lo stabilimento stabilisce la quantità di merce che potrà disporre e quindi inviare alle proprie società commerciali (GSU\(_{\text{assigned}}\)). Tale quantità viene ripartita tra le SC gestite a Replenishment e quelle gestite tradizionalmente a ordine. In particolare, la quantità assegnata alle SC gestite a Replenishment avviene proporzionalmente alle richieste. Lo stabilimento ha scelto di considerare la media del RN delle quattro settimane precedenti in modo da evitare l’errata assegnazione dovuta a eventuali picchi di richiesta che si discostano dal normale flusso di fornitura.

\[
\text{GSU}_{\text{assigned},i,k} = \text{GSU}_i \times \frac{\sum_{j=i-3}^{i-1} \frac{\text{RN}_{j,k}}{4}}{\sum_{k=1}^{n} \sum_{j=i-3}^{i-1} \frac{\text{RN}_{j,k}}{4}}
\]

dove: \(\text{GSU}_{\text{assigned},i,k}\) è la quantità di merce di un determinato codice assegnata nella i-esima settimana alla k-esima SC; \(\text{GSU}_i\) è la quantità di merce disponibile nella settimana i-esima per le SC gestite a Replenishment; \(\text{RN}_{j,k}\) è il valore del Replenishment Need nella settimana j-esima della k-esima SC; Analogicamente accade per l’assegnazione del piano di montaggio. La disponibilità assegnata alla SC in un determinato periodo sarà quindi pari a:

\[
\text{DISP}_{i,k} = \text{GSU}_{\text{assigned},i,k} + \text{P.MONT}_{\text{assigned},i,k}
\]

715
dove: $DISP_{i,k}$ è la disponibilità assegnata nella i-esima settimana alla k-esima SC;
$P.MONT_{assigned,i,k}$ è il piano di montaggio assegnato nella i-esima settimana alla k-esima SC.

DISPATCH PLAN (DIP): determinata la quantità del rifornimento a capacità infinita (RN) e la disponibilità del codice, è possibile stabilire il piano di spedizione (DIP) in cui viene definita la quantità che la fabbrica spedisce effettivamente alla sales company valutando la propria capacità produttiva e le scorte presenti nello stabilimento (quantità del rifornimento a capacità finita). Il DIP è un piano rolling con un orizzonte temporale di tre settimane ovvero ogni settimana viene rigenerato il piano di spedizione della settimana corrente (W1) e delle due settimane successive (W2 e W3).

Vediamo ora come si articolà il calcolo del DIP nello stabilimento di Porcia che risulta essere caratterizzato da un frozen produttivo di due settimane e da un frozen distributivo nullo. Nella prima settimana di frozen produttivo (i=1) (Figura 6) il calcolo parte dal valore del Replenishment Need della settimana (RN1) precedentemente determinato nel processo di Replenishment Need Calculation: se tale valore è negativo il sistema lo annulla automaticamente in modo tale che non venga consegnata alcuna merce alla SC, in caso contrario il sistema considera la disponibilità assegnata alla SC (DISP1): se essa risulta superiore al RN1 allora la quantità che verrà inviata alla SC (DIP1) sarà pari al valore del RN1, altrimenti verrà consegnata alla SC una quantità pari alla disponibilità assegnata. Dopo questo calcolo viene determinata la quantità spedita in eccesso o in difetto ($ARN$) e la quantità di prodotti presenti a magazzino alla fine della settimana di frozen produttivo ($GSU_{projected}$ ), in cui viene considerato anche il piano di consegna per quelle SC non gestite a Replenishment ($DF_{SCorder}$). Tale calcolo si ripete per la seconda settimana di frozen produttivo e per la prima settimana non congelata, che, in quanto tale, prevede un piano di montaggio tale da soddisfare le quantità di Replenishment Need previste: per questa settimana quindi $DISP=RN=DIP$ e di conseguenza $ARN=0$. Se per un determinato codice si ha $GSU_{projected}>0$ significa che la disponibilità assegnata è superiore alle richieste e quindi questa disponibilità viene riassegnata all'interno del frozen produttivo a quelle SC per cui tale codice presenta un $ARN>0$ (ritardo di consegna), incremontando quindi per tale periodo la disponibilità assegnata e quindi il DIP.

In base a queste considerazioni, vediamo ora come viene strutturata nello stabilimento di Porcia l'organizzazione temporale di tali fasi del Replenishment che conducono alla pianificazione dei rifornimenti e delle linee produttive nel breve periodo. Come prevede il modello, le società commerciali forniscono ogni giorno alla fabbrica, tramite EFS95, i dati riguardanti le vendite, la GSC, gli Arrival Advice
e il portafoglio ordini, e il lunedì mattina le previsioni di vendita delle 16 settimane rolling.

![Diagrama de Dispatch Planning](image)

**Figura 6. - Dispatch Planning**

![Diagrama delle fasi del Replenishment](image)

**Figura 7. - Fasi della pianificazione del Replenishment**

Il lunedì (Figura 7) quindi viene effettuato il calcolo del TAS e del Replenishment Need per le 12 settimane rolling. Questi dati vengono integrati dal sistema locale di livello4 con quelli relativi alle scorte della fabbrica e trasferiti al sistema di livello3 che pianifica le linee di produzione con frequenza settimanale. In particolare viene determinato il Dispatch Plan relativo alla settimana corrente (W1) alle due settimane successive (W2, W3) e il previsionale di montaggio della seconda settimana successiva (W3).

Il martedì viene eventualmente modificato manualmente il Dispatch Plan e conseguentemente il piano di montaggio per la settimana W3, piano che viene quindi congelato e spalmato sulle diverse linee di assemblaggio, mentre il mecoledi ne viene creato uno previsionale per la settimana W4 ad uso dei fornitori.

### 3.2 Risultati

L’adozione del processo di *Replenishment* si è dimostrato un successo per il gruppo Electrolux. Il passaggio dalla logica tradizionale di rifornimento all’approccio del *Replenishment* ha permesso di ottenere vantaggi significativi per tutti i soggetti della catena di distribuzione e fornitura; in particolare per lo stabilimento produttore si
sono tradotti principalmente in: a) reazione immediata alle diverse richieste del cliente, b) maggiore livello di servizio al cliente, c) riduzione degli errori derivanti dall’eliminazione dei supporti cartacei, d) incremento della visibilità del mercato, e) miglioramento nella pianificazione e riduzione della ripianificazione, f) significativa riduzione delle scorte sia all’interno dello stabilimento produttivo che nell’intera catena di monte e valle g) migliore gestione dei rischi e delle opportunità h) maggiori vendite.

Analizzando in particolar modo lo stabilimento Electrolux di Porcia, e operando un confronto tra gli anni 1998 (anno in cui è iniziata nello stabilimento di Porcia l’implementazione del processo di CR verso le SC) e 2000 (anno in cui il processo può essere considerato a regime), si possono quantificare i risultati raggiunti analizzando i principali indicatori di performance della supply chain: la scorta integrata e l’analisi dell’Order Fill Rate.

Come si può notare dalla (Figura 8.a) i volumi di scorta integrata si sono sensibilmente ridotti (in certi periodi la diminuzione ha toccato il 30%), permettendo in questo modo un significativo decremento dei costi di stoccaggio a vantaggio di tutti i soggetti della catena. Questa riduzione dei costi infatti può tramutarsi in una riduzione dei prezzi dei prodotti e quindi in un possibile incremento delle vendite.

Figura 8. -(a) Andamento della scorta integrata; (b) Percentuale di righe d’ordine non evase per cause imputabili al sistema produttivo
Un importante risultato è anche quello ottenuto dall’analisi dell’Order Fill Rate, cioè della capacità dell’azienda di soddisfare in termini di tempi e volumi le richieste del cliente finale, valutando le righe d’ordine non correttamente soddisfatte. In particolare sono stati valutate le righe d’ordine non evase dallo stabilimento nella data stabilita o nella quantità stabilita per mancanza di prodotto a magazzino e quindi direttamente imputabili al sistema produttivo.
Passando dal 1998 al 2000 (Figura 8.b) si è riscontrato dall’analisi dell’Order Fill Rate un aumento delle quantità evase correttamente e in particolare, come si può notare dalla (b), si riscontra una diminuzione della percentuale degli ordini non evasi in modo corretto a causa di errori imputabili al sistema produttivo.

4. Contesti applicativi del Replenishment

Il campo di applicabilità del processo basato sulla logica del Continuous Replenishment non risulta illimitato. All’interno di uno stesso stabilimento produttivo del gruppo Electrolux esso rappresenta il principale ma non l’unico sistema di gestione dei rifornimenti utilizzato sia per il processo di riapprovvigionamento di monte che per quello di valle. La gran parte delle società commerciali sono gestite a Replenishment, ma non tutte: per quelle extraeuropee e per i clienti terzisti si continua ad utilizzare il tradizionale sistema di rifornimento basato sugli ordini. Questo è principalmente dovuto a: 1) elevati tempi di consegna che vanificano tutti i vantaggi in termini di tempo ottenuti dall’implementazione del Continuous Replenishment; 2) ridotta penetrazione nel mercato e quindi ridotto volume di apparecchiature vendute; 3) specifiche esigenze e problematiche delle società commerciali.

![Diagramma](image)

*Figura 9. - Variabili critiche per la scelta del sistema di rifornimento di valle*

Variabili cruciali quindi che condizionano l’utilizzo del processo di rifornimento verso le società commerciali sono la distanza tra stabilimento produttivo e SC e
volume di prodotti scambiati. In Figura 9 vengono rappresentate le due condizioni limite: elevato volume rifornito/modesta distanza tra stabilimento produttivo e sales company, in cui viene preferito il Replenishment, e ridotto volume rifornito/ele
ta distanza, in cui viene preferito il modello tradizionale di rifornimento.
Anche per quanto riguarda la gestione del processo di rifornimento di monte, a causa
della varietà delle caratteristiche distinctive dei codici e dei fornitori gestiti, il
processo di Replenishment, pur rappresentando la soluzione principalmente adottata,
non copre l’intero spettro delle emissioni d’ordini. Accanto al processo di
Replenishment, giustificato in presenza di un volume di scambio e criticità del
componente elevati, nonché una vicinanza, affidabilità e livello di informatizzazione
del fornitore rilevanti, coesistono inoltre altre tre tecniche:

- la gestione tradizionale tramite Reorder Point (ROP). Questa viene utilizzata
soprattutto per quei codici caratterizzati in particolare da una bassa criticità e
specificità, da un ridotto ingombro (minuteria, viti, ecc.) e da un volume di
scambio discreto; non richiede un’elevata affidabilità, vicinanza e grado di
informatizzazione dei fornitori;

- la gestione tramite il calcolo dei fabbisogni con ordine=fabbisogno e senza
sistemi di protezione (scorte di sicurezza e lead time di sicurezza nulli) per cui
viene richiesta, nel momento in cui ha inizio la produzione di un determinato
lotto, la quantità esatta di materiale. La scelta dei codici gestiti con tale tecnica
(cablaggi, ecc.) deriva da un’analisi di make or buy, determinata anche da
esigenze e vincoli di magazzino; essi sono principalmente caratterizzati da una
elevata specificità e da un basso volume di scambio. L’affidabilità richiesta al
fornitore deve essere quindi assai elevata e il grado di informatizzazione
discreto;

- la gestione Just In Time con più consegne al giorno (JIT per fasce orarie). Questa
tecnica è limitata soprattutto a quei componenti caratterizzati sia da un
elevato volume di scambio sia da un considerevole ingombro e quindi conviene
riceverne più spedizioni al giorno senza la necessità di immagazzinarli per un
intero giorno. Tale gestione richiede però un’elevata affidabilità, vicinanza e
grado di informatizzazione del fornitore. L’elevato ingombro e la ridotta
criticità del codice rappresentano quindi gli elementi che distinguono le
condizioni di applicabilità di tale tecnica rispetto al Replenishment.

I principali elementi distintivi quindi che condizionano l’applicabilità del
Replenishment e che determinano la scelta del processo da utilizzare sono
individuabili nel volume di scambio, inteso come numero di pezzi su base annua,
nell’ingombro del codice, nella criticità del codice, intesa come impatto sulla
disponibilità del prodotto (non sostituibilità, ecc.), nella specificità del codice, nella
vicinanza del fornitore, nell’affidabilità e nel grado di informatizzazione del
fornitore.
I valori assunti da queste variabili, mostrati in Tabella 1, determinano le condizioni di applicabilità dei sistemi di gestione delle forniture utilizzati dallo stabilimento. Nella realtà molto spesso i valori assunti da tali variabili non individuano univocamente una delle condizioni sopracitate. In tali situazioni la scelta della tecnica da utilizzare è demandata al responsabile della funzione acquisti che è chiamato ad analizzare e valutare di caso in caso il giusto peso da attribuire alle variabili.

<table>
<thead>
<tr>
<th>variabili</th>
<th>tecniche</th>
<th>ROP</th>
<th>CALCOLO DEI FABBISOGNI con ORDINE=FABBISOGNO e SS=LTS=0</th>
<th>JIT PER FASCE ORARIE</th>
<th>REPLENISHMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>volume</td>
<td>medio</td>
<td>medio</td>
<td>basso</td>
<td>basso</td>
<td>basso</td>
</tr>
<tr>
<td>ingombro del codice</td>
<td>basso</td>
<td>medio</td>
<td>alta</td>
<td>alta</td>
<td>alta</td>
</tr>
<tr>
<td>criticità del codice</td>
<td>bassa</td>
<td>media</td>
<td>bassa</td>
<td>bassa</td>
<td>bassa</td>
</tr>
<tr>
<td>specificità del codice</td>
<td>bassa</td>
<td>alta</td>
<td>bassa</td>
<td>bassa</td>
<td>bassa</td>
</tr>
<tr>
<td>vicinanza del fornitore</td>
<td>bassa</td>
<td>alta</td>
<td>alta</td>
<td>alta</td>
<td>alta</td>
</tr>
<tr>
<td>affidabilità del fornitore</td>
<td>bassa</td>
<td>alta</td>
<td>alta</td>
<td>alta</td>
<td>alta</td>
</tr>
<tr>
<td>informatizzazione del fornitore</td>
<td>bassa</td>
<td>media</td>
<td>alta</td>
<td>alta</td>
<td>alta</td>
</tr>
</tbody>
</table>

Tabella 1. - Contesti applicativi dei sistemi di gestione dei rifornimenti di monte

5. Sistema tradizionale e Continuous Replenishment a confronto

Come è già stato accennato nell'introduzione il Continuous Replenishment (CR) rivoluziona il sistema tradizionale di rifornimento. Dall'analisi teorica dei due processi e dallo studio del caso aziendale, sono stati individuati sei principali macroelementi, riportati in Tabella 2, che caratterizzano e differenziano i due modelli proposti: la generazione dell'ordine, i dati scambiati, gli strumenti utilizzati, la gestione e la pianificazione della produzione da parte del fornitore, le prestazioni ed i contesti di applicazione.

Dall'analisi effettuata il processo di generazione dell'ordine risulta profondamente diverso e modificato nel passaggio dal sistema tradizionale al Continuous Replenishment: la responsabilità del rifornimento passa infatti nelle mani del fornitore che non riceve più ordini da evadere, ma pianifica quantità e tempi dei rifornimenti in modo tale da garantire un livello di giacenza dinamico in funzione alle fluttuazioni del mercato (TAS - Target Stock) e ottimizzare non solo la propria giacenza ma l'intera scorta integrata. Il semplice trasferimento quindi degli ordini di acquisto da evadere tra cliente e fornitore lascia spazio ad un intenso scambio di dati ed informazioni sulle previsioni di vendita, sul livello di giacenza dei magazzini del
cliente, sugli ordini e i consumi dei nodi più a valle della catena, sulle azioni promozionali intraprese dal cliente.

La maggiore intensità e tempestività richiesta dal CR al flusso dei materiali ed al flusso informativo richiede l'uso di strumenti diversi da quelli che supportano il modello tradizionale. Da un lato quindi vengono utilizzati i tradizionali strumenti basati su supporti cartacei (fax, ecc.), dall'altro strumenti elettronici paperless, sistemi standardizzati di trasmissione e di codifica, sistemi automatizzati di generazione e di gestione del rifornimento.

Nel CR inoltre la condivisione tra le due parti dei dati di vendita e delle attività di marketing permettono in primo luogo di realizzare una sensibile diminuzione dell'amplificazione della domanda lungo la catena (effetto forrester), limitando le decisioni indipendenti intraprese dai singoli membri della catena quali promozioni o sovracquisti ed in secondo luogo l'attenuazione della distorsione delle previsioni del fornitore e quindi un miglioramento della pianificazione produttiva. La maggiore attendibilità delle previsioni di vendita (SF), la definizione di un livello di scorte dinamico (TAS) da garantire presso il cliente ed il suo continuo monitoraggio delle scorte (GSC) permettono inoltre al fornitore di ottenere, rispetto alla tradizionale pianificazione della produzione basata principalmente sulle distorte previsioni di vendita, un netto miglioramento in termini di efficienza nella definizione dei piani produttivi (MPS). Avendo infatti la libertà di pianificare i rifornimenti, è in grado, a parità di scorte, di operare un maggiore livellamento ed ottimizzazione della capacità produttiva nonché una migliore saturazione dei carichi spediti e dei trasporti.

La maggiore integrazione logistica e soprattutto informativa garantisce un miglioramento dell'efficienza non solo interna ad ogni singola unità, come accade in un sistema tradizionale di rifornimento, ma dell'intera catena di fornitura. Il continuo monitoraggio del cliente infatti permette al fornitore di selezionare, in caso di una indisponibilità di risorse, dei criteri di assegnazione delle priorità conformi alle criticità contingenti e non basarsi, in mancanza di una visione chiara, su criteri quali il quantitativo ordinato, la frequenza, l'importanza del cliente, ecc. che potrebbero sfavoreire situazioni più critiche in quel frangente.

In ultima analisi, sebbene il Continuous Replenishment possa permettere, rispetto ad un sistema tradizionale di rifornimento, un incremento delle prestazioni dell'intera supply chain, i suoi campi di applicabilità risultano sicuramente ridotti. La partnership informativa e strategica tra le parti richiede un coinvolgimento e una fiducia reciproca mentre l'integrazione logistica comporta elevati investimenti in strutture tecnologiche giustificabili quindi solo a fronte del raggiungimento di una massa critica di scambio; d'altra canto i vantaggi ottenibili da tale processo possono essere vanificati in presenza di distanze elevate tra i nodi della catena che richiedono tempi di consegna molto lunghi.
### Tabella 2. - Sistema tradizionale di rifornimento e Continuous Replenishment a confronto

<table>
<thead>
<tr>
<th>Sistema tradizionale</th>
<th>Continuous replenishment</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Responsabilità del cliente</strong> vs <strong>Responsabilità del fornitore</strong></td>
<td></td>
</tr>
<tr>
<td>Emissione dell'ordine da parte del cliente</td>
<td>Assenza dell'emissione dell'ordine</td>
</tr>
<tr>
<td>• Evasione vs Pianificazione</td>
<td>• Pianificazione dei rifornimenti da parte del fornitore, secondo un livello di giacenza concordato (TAS) dinamico con le fluttuazioni del mercato</td>
</tr>
<tr>
<td>• Scorta indipendente vs Scorta integrata</td>
<td>• Responsabilità della scorta integrata da parte del fornitore</td>
</tr>
<tr>
<td>• Responsabilità indipendente delle scorte del cliente e del fornitore</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dati scambiati</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Ordini di acquisto</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Strumenti indipendenti vs Strumenti comuni, standardizzati ed integrati</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Trasferimenti informativi realizzati in genere con supporti cartacei (fax, ...)</td>
</tr>
<tr>
<td>• Sistemi manuali di generazione e gestione del rifornimento</td>
</tr>
<tr>
<td>• Sistemi di codifica, identificazione, trasmissione e trasporto indipendenti</td>
</tr>
<tr>
<td>• Sistemi elettronici per l'automatizzazione dei processi del rifornimento</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gestione e pianificazione della produzione da parte del fornitore</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Previsioni definite in base alle proprie vendite distorte da sconosciute promozioni e sovraacquisti</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Strumenti</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Pianificazione instabile vs Pianificazione più stabile e livellata in termini di capacità</td>
</tr>
<tr>
<td>• Definizione dell'MPS in base alle previsioni (SF, back orders (BO) e alle disponibilità presso il magazzino (DISP))</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Assegnazione delle priorità vs Assegnazione delle priorità non conforme alle reali criticità</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Assegnazione delle priorità conforme alle reali criticità contingenti ma basate su quantitativo ordinato, frequenza d'ordine, dimensione del cliente.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Efficienza dei processi interni vs Efficienza dei processi interni ed esterni</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Lead time elevati dei processi di interfaccia</td>
</tr>
<tr>
<td>• Spedizioni non temprificate</td>
</tr>
<tr>
<td>• in genere non ottimizzazione dei carichi</td>
</tr>
<tr>
<td>• elevata scorta integrata</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Condizioni di applicabilità</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Volumi di scambio anche piccoli</td>
</tr>
<tr>
<td>• Distanze anche elevate tra fornitore e cliente</td>
</tr>
<tr>
<td>• Non utilizzo in genere di supporti informatici</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prestazioni</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Bassi volumi, distanze elevati, bassa integrazione</td>
</tr>
<tr>
<td>• Grandi volumi, brevi distanze, elevata integrazione</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Efficienza dei processi interni</th>
</tr>
</thead>
<tbody>
<tr>
<td>SF</td>
</tr>
<tr>
<td>BO</td>
</tr>
<tr>
<td>DISP</td>
</tr>
<tr>
<td>MPS</td>
</tr>
<tr>
<td>LAS</td>
</tr>
<tr>
<td>GSC</td>
</tr>
<tr>
<td>BO</td>
</tr>
<tr>
<td>DISP</td>
</tr>
<tr>
<td>RN</td>
</tr>
<tr>
<td>MP</td>
</tr>
</tbody>
</table>
6. Conclusioni

I risultati empirici evidenziano come l'implementazione del modello di *Replenishment*, che segue la logica innovativa del Continuous Replenishment proposto dall'ECR, ha permesso al gruppo Electrolux di ottenere significativi risultati, confermando la realizzabilità dei benefici proposti in via teorica. Gli obiettivi che il gruppo si era prefissato sono stati raggiunti nelle linee generali, anche se i progetti futuri dell'Electrolux sono ancora più ambiziosi e tesi ad un miglioramento del processo di rifornimento attraverso un rafforzamento delle comunicazioni con i fornitori e con le società commerciali per monitorare giornalmente lo stato delle consegne e l'andamento del mercato. L'obiettivo principale è quello di ridurre quindi la principale fonte di errore e di inefficienza del processo, ovvero l'incertezza legata alle previsioni di vendita, variabile che influenza pesantemente la definizione del TAS e quindi del livello delle scorte. Tali evidenze empiriche confermano inoltre come l'adozione della logica del Continuous Replenishment, ideata per il settore grocery, possa essere estesa con successo e con evidenti benefici anche in altri settori, tra cui quello degli elettrodomestici. Sicuramente le dimensioni del gruppo considerato e dei partner a monte e a valle con cui è stato avviato il processo di *Replenishment* confermano le valutazioni inerenti le condizioni per le quali è conveniente ricorrere all'implementazione di tale procedura. Elevati volumi di vendita, la criticità delle consegne dei materiali riforniti e prodotti, la ridotta distanza spaziale intercorrente tra gli stabilimenti e società commerciali, l'elevato know-how e grado di avanzamento nell'information tecnology rappresentano infatti le condizioni decisamente favorevoli per l'adozione di tecniche di gestione come il Continuous Replenishment.

**Legenda**

CR (Continuous Replenishment), DIP (Dispatch Plan), ECR (Efficient Consumer Response), EDI (Electronic Data Interchange), EFS (Electrolux Forecasting and Supply System), GIT (Goods in Transit), GR (Goods Retailer), GSC (Goods Sales Company), GSS (Goods Supply Unit), MPC/PO (Model Plan Code/Product Order), OTD (Order TO Delivery), OTP (Order To Payment), PRC (Preconsultivo), RN (Replenishment Need), SC (Sales Company), SU (Supply Unit), TAS (Target Stock).
Bibliografia


