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Abstract 

This study analyzes the most widewpread methodologies available in literature used to measure 

complexity. The research moves from a theoretical physic perspective, through the Complexity 

Theory, to a manufacturing system. On these subjects, two classification frameworks are proposed 

in order to categorize the most widespread measures. In particular, the second classification 

framework regards entropic measures widely used to measure complexity in manufacturing 

systems. 

With reference to this second framework, two indexes were selected (static and dynamic 

complexity index) and a Business Dynamic model was developed. This model was used with 

empirical data collected in a job shop manufacturing system in order to test the usefulness and 

validity of the dynamic complex index. 

The Business Dynamic model analyzed the trend of the index in function of different inputs in a 

selected work center. The results showed that the maximum value of the dynamic complexity index 

represents the so called “edge of chaos”, where the amount of information needed to manage the 

system is maximum and where there is the trade off between flexibility and efficiency of the 

production system. In conclusion, the main result reached in this study regards the “edge of chaos” 

that is the target configuration for a company, in a particular system and under the same external 

conditions. 

Key Words 

Complexity Measures, Entropic Measures, Manufacturing Systems, Job-shop, Business 

Dynamics 
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1. Introduction 

The origins of the studies of the Complexity Theory come from the researches about far from 

equilibrium thermodynamical phenomenon carried out by Nobel Prize Ilya Prigogine [1,2]. The 

following studies about complexity took very different directions and their development has been 

rushing and untidy because of their extreme multidisciplinary.  

A system is a whole of linked parts which interact each other. Therefore, the complexity of a 

system refers to the number of connections or influences between the same parts of the system [3]. 

A “simple” system may assume a limited number of conditions, while a chaotic one may assume an 

enormous number of conditions because its parts are dispersed and they interact freely; in this way 

his behavior is absolutely not predictable. But a complex system is not a chaotic system. 

Particularly, a complex system [4] is made of a number of different parts, which possess specialized 

functions. The elements of the system are hierarchically organized and they are linked by many 

non-linear connections but the hierarchical structures guarantees to keep a kind of control. These 

non-linear connections make impossible an analytical approach for the description of every part of 

the system, while it is necessary a synthetic approach for the comprehension of the whole system. 

Therefore, a complex system places itself between systems whose behavior is simply predictable 

and the chaotic systems.  

A particular kind of complex system is a complex adaptive system (CAS) [5]. This kind of 

system has another important characteristic: it changes, learns and evolves passing through “almost 

equilibrium” configurations. Complex adaptive systems are characterized by an emergent behavior 

of its elements, whose behavior stands between predictability and unpredictability.  

Classical economic theory describes firms as entities whose target is optimizing resources 

utilization and maximizing earning [6]. Moreover, a company: 

− Knows all available techniques, e.g. all possible combinations of input and output; 

− Knows its own production function, e.g. it knows the maximum reachable level of output for 

every level and combination of input; 

− Knows the costs of the factors, so it can define how to use at best productive factors which 

correspond with minimum costs for every desired output level; 

− Knows market demand and so it decides the production level which corresponds with the output 

satisfying firm’s target. 

In other words, a manufacturing system is a “device” which receives signals from the outside 

and, according to this signals, takes actions (for instance plans and starts the production activities). 

According to the classical paradigm, companies are simple systems in a simple environment and the 

relationships between their agents are simple and known. The instability is mainly due to the 

management ignorance or incompetence. 

Complexity theory considers unsteadiness as a system’s characteristic which may have a random 

behavior even if no change happens outside: it is the structure of the system itself which generates 

the behavior represented by the science of retroactive control. Firms are clearly guided by 

retroactive control mechanisms. 

A simple representation of manufacturing firms is no more possible because it doesn’t consider 

all decisions which have to be taken about the use of manufacturing factors: they have to be used in 

the best way, which must be also mutually compatible [6]; moreover, we can find the following 

characteristics:   

− Interdependence: subsystems are linked each other, so the consequence of an action made on a 

unit depends of the actions made at the same time on the other units. There may be different 

kind of interdependencies, so their treatment may be more or less simple. We have a quite 

simple case when the relations between a unit and a group of other units are additive and 

separable (for example a linear linkage). In other cases interdependencies are more difficult and 

they are characterized by non linear relations, typical of a complex system.  
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− Numerousness of the states that units can assume (dimensionality of the system): the number of 

states that a unit may assume depends of technical or organizational discretionary power they 

have. If we consider together numerousness and interdependence, we understand that if we 

intervene on a variable controlled by a unit or a subsystem, we may find states very different 

from the starting one. This kind of difficult is one of the major problems to face in the 

management of complex systems.  

− Uncertainty: in complex manufacturing systems, the outside conditions the system must face 

and the states the system may assume are never completely predictable.  

− Irreversibility: it means that there is a cost attached to the changing of state, often associated 

with uncertainty.  

The comprehension of the existence of these features allows us to consider organizations as 

complex systems in complex environments, which have to be managed with complex managerial 

methods.  

2. Complexity Measures  

Complex systems are characterized by such a number of different aspects which makes 

extremely difficult their study and many doubts arose about the possibility to create a unifying 

theory about complexity [7]. It is very hard define what a complex system exactly is, but it is even 

harder trying to develop a complexity measure which can consider all different aspects of 

complexity. Such a difficult is related to the multidisciplinary of such theory, which made the 

substantive “complex” assume very different meanings [8]. “Complexity” itself has been used in the 

wrong way by many authors, who wanted to bescribe properties which have nothing to do with 

complexity theory [9].  

Different works have been examined to create an overview of the literature. The works examined 

were 105 and they were published in the period 1948-2005. These are the classes of the works:  

− Papers and international reviews (34 papers)  

− Collections of essays or book chapters (7 papers)  

− Workshops and conference proceedings (42 papers)  

− Papers on line (22 papers)  

The analysis concentrated on two main aspects. In the first phase we studied the theoretical basis 

of complexity measurement, and we examined arguments as:  

− Physics and Theoretical physics (25 papers)  

− Information theory (5 papers)  

− Classical science (8 papers) 

− Scientific applications (8 papers) 

In the second phase we studied the managerial applications of these studies, whose arguments 

are:  

− Manufacturing (28 papers)  

− Supply chain (13 papers)   

− Design (3 papers)  

− Corporate organization (1 paper)  

Proposed Classification of Complexity Measures  

Considering the researchers point of view, we found in the literature two kinds of divisions for 

complexity measures. If we consider the focus of the measure, we can distinguish:  

− Deterministic complexity: the focus is on the random behaviour of the system. Such 

complexity measures are maximized for random strings.  
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− Statistical complexity: the focus is on the structure of the system.  

If we consider the methodology used to develop the complexity measure, we can find two 

classes:  

− Computation theory: it is needed a mechanism, usually an Universal Turing Machine (UTM) 

to calculate the measure;  

− Information theory: they are connected with Shannon’ entropy formula.  

If we cross these variables, we obtain the matrix in figure 1. The terminology is the same used by 

the Santa Fe approach (see [9]) and [10]). These authors state that: 

 
“The quantities that have been proposed as general structural measures are often referred to as complexity 

measures. To reduce confusion it has become convenient to refer to them instead as statistical complexity 

measures. In so doing they are immediately distinguished from deterministic complexities, such as the 

Kolmogorov_Chaitin complexity, which requires the deterministic accounting of every bit – random or not - in 

an object.”[9]. 

 

For example, in the first quadrant (high – left, Deterministic complexity – Computation theory) 

we find the “classical” complexity measure, e.g. Kolmogorov complexity, which has been 

developed to adapt Shannon’s information theory to dynamical systems study. We define it using 

the word of [9]. 

 
“The Kolmogorov-Chaitin complexity K(x) of an object x is the length, in bits, of the smallest program (in 

bits) that when run on a Universal Turing Machine outputs x and then halts.” 

 

 

Figure 1:  Proposed Classification of complexity measures 

This kind of measure is maximized by random strings. During the years which followed the birth 

of this measure, it has been better appreciated that measuring the randomness of a system is not 

sufficient to understand all the aspects linked to systems’ complexity [9]. Moreover, this quantity is 

usually not computable [11]. Therefore we can say that Kolmogorov complexity is an ancestor of 

complexity measures, although it is useless in many practical problems.   

An example of deterministic complexity which makes use of information theory is metric 

entropy, which can be defined as a measure of the degree of long term unpredictability of a system.  

Table 2 is a synthesis of the main literature references analyzed. It points out some 

characteristics of the measures analyzed together with the synonyms found in the literature. 
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Some deterministic complexity measures, which make use of computation theory, have been 

developed before the birth of Complexity Theory. These measures have been developed to 

characterize:  

 
“[…] deterministic sources of apparent randomness in the late […]. These efforts to describe the 

unpredictability of dynamical systems were largely successful.” [9]. 

 

When the study of complex systems were still at the beginning, the main feature that captured 

researcher’s attention was the apparently random behaviour of many natural systems. Therefore it 

has been immediate to use the existing “randomness” measures.  

In the following years the study of complex systems made many steps further:  

 
“Since that time though it has become better appreciated that measuring the randomness and 

unpredictability of a system fails to adequately capture the correlational structure in its behavior” [9]. 

 

Therefore these kinds of measures, although historically important, are “incomplete” complexity 

measures. Similarly, the main limit of deterministic complexity measures which make use of 

information theory lays in the nature of such measures, which don’t consider the structure of the 

system. Because of the uncomputability associated with UTM, the utility of statistical complexity 

measures which make use of the computation theory is limited to the possibility to get information 

about the system analyzing the way these measures converge [12]. 

In the last years, the main interests have been concentrated on statistical complexity measures 

which make use of information theory. These measures combine an entropic index, which describes 

the randomness of the system, with a corrective term. The aim is to comply with boundary 

conditions, where complexity measure must lower for perfectly ordered systems or random systems.  

As [13] writes, the main limit of information theory is that it doesn’t give information about the 

structure of the process, it is a probabilistic description of its behaviour. Moreover, 

  
“Information itself is never rigorously defined; it is only quantified.” [13] 

 

Therefore the quantity of information is identified, not the nature. However it’s appropriate to 

emphasize that the entropic measures are used more often than other types of measures because: 

 
 “There are many ad hoc methods for detecting structure but none are as widely applicable as entropy is for 

indicating randomness.” [14] 

 

Finally the “complexity” of the system (the texture of interactions between the constituent 

elements) generates a distribution of probability that describes the possible states that the system 

can assume. The entropy function elaborates such distributions of probability. 
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Table 2: Complexity measures and characteristics 

 

Name Authors Period Characteristics Synonym 

Shannon’s 

entropy rate 

Shannon  end ’40 -

beginning 

’50 

− It is maximum for equiprobable 

states, e.g. for chaotic systems.  

− Focus on system’s behavior.  

− Metric entropy 

 

Kolmogorov 

complexity 

Kolmogorov ’50 − It is needed a UTM.  

− Incomputable. 

− Maximized for random strings. 

− Algorithmic complexity; 

− Algorithmic information 

content (AIC); 

− Algorithmic information; 

− Algorithmic 

randomness; 

− Dynamical entropy;  

− Kolmogorov – Chaitin 

complexity (or entropy);  

− Kolmogorov – Sinai 

Excess entropy Packard, 

Crutchfield 

 

1982 
− The process complexity depends by 

the capability to foresee the behavior 

when the available information 

increase. 

− Stored information;  

− Effective measure of 

complexity;  

 

Logical depth Bennet 1986 − Computation time measure of 

system’s structure.  

− It measures the difficulty of 

making predictions from theory.  

 

Thermodynamic 

depth 

Lloyd, 

Pagels 

1988 − Complexity depends of the process 

which lead to the actual state.  

− Arbitrary choice of the states.  

− Although it has been introduced as 

a structural measure, it is maximum 

for a random behavior.  

 

Rissanen 

complexity 

Rissanen  

1989 
− It studies the stohocastic behavior 

of the system.  

− Distinction between predictable 

and casual states.  

− Maximized for random strings.  

− Stochastic complexity 

− MDL (Minimum 

Description Length);  

− Non-linear modeling 

LMC complexity López-Ruiz, 

Mancini, 

Calbet. 

 

1995 

 

− Complexity depends of entropy and 

disequilibrium.  

− Quite easy to calculate.  

− Formally not correct because of its 

non extensivity.  

 

Effective 

complexity 

Gell-Mann 1995 − Its focus are both structure and 

behavior.  

− It depends of observation and 

observer conditions.  

− Complexity is created by element’s 

connections.  

 

Simple measure 

for complexity 

Shiner, 

Davison, 

Landsberg 

 

1999 

 

− It depends of a quantity called 

“disorder” (ratio between two 

entropies)  

− Formally not correct.  

 

Self – 

dissimilarity 

 

 

 

 

Wolpert, 

Mcready 

1997 − It requires the creation of a model 

from experimental observations.  

− It requires multiscale observations. 

− Particular case of effective 

complexity.  
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Complexity Measures in Management 

In the literature about management, two classifications have been found with reference to the 

measures of complexity of a manufacturing system (see table 3) (Gaio et al. [6] e Calinescu et al 

[15]). Gaio et al [6] identifies two principal group of measures for complexity: 

− Fitness measures 

− Entropic measures (static and dynamic complexity)  

The fitness is the degree of adaptation of an organism in an environment (Darwin in 1868 speaks 

about “survival of the fittest”). In an evolutionary context the complexity generates advantages and 

possibilities [16] giving a parallelism between the concept of fitness and the concept of complexity. 

 
“Innovation allows an organism to adapt to a changing environment. Ordered behaviour and structure are 

necessary as a foundation for further evolution and in order to take advantage of regularity.” [13] 

 

In the following years the concept of fitness has been declined to the managerial and 

organizational studies about: 

− Organizational development [17] 

− Organizational structures evolution [18] 

− Technologies selection  [19] 

Therefore the analysis remains mainly qualitative [6] with only one type of index developed: the 

index of fitness. Beside the difficulties to the computation of such an index, this methodology has 

been rejected because it was an indirect measure of complexity 

The further distinction that the authors make about the entropic measures regards the static and 

dynamic complexity. The static complexity measures refer to the structure of the production 

operations: 

 
“[it] is a characteristic associable to the systems  - and so also to the production processes - that refers to the 

structure of the facilities or to the structure of the plant and considers the degree of difficulty for their 

management and control. Such type of complexity becomes important when the possible design of a facility or 

plant is studied.” [6] 

 

Vice versa the dynamic complexity: 

 
“ […] refers to the analysis of the systems along the time, in other words it studies the trend of the real 

states that the process assumes within the considered time. [ … ] However from the point of view of the 

entropic measures we can consider […] the trend of the waiting queues (or the warehouses). In fact they absorb 

the variability of a system unit along the time” [6] 

 

Calinescu et al [15] assert that: 

 
“So far, there have been a limited number of cases of using entropy for assessing, comparing or controlling 

manufacturing systems.” 

 

The authors distinguish four different variants of entropic measures: 

− Deshmukh [20];  

− Frizelle [21];  

− Karp e Ronen [22];  

− Yao [23]. 
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Table 3: Most widespread classification framework in the literature 

 
 

The entropic measures have been already analyzed within the theoretical physics (see previous 

section). According to the provided analyses, entropic measures appear as the most used methods to 

measure complexity. Figure 2 shows the main entropic measures founded in the scientific literature. 

In particular, we named them as follow: 

− School of Cambridge - Oxford: the starting point of the co-ordinated research project of the 

two universities is based on a first work of Frizelle [21]. Two types of measures, both 

entropic, are used in order to define:  

o Static complexity (function of the structure of the production operations);  

o Dynamic complexity (function of the behaviour of the production operations) 

These measures define the uncertainty level, or quantity of information necessary, in a system 

description. 

− Deshmukh [20]:  this approach aims to analyze the static complexity in a production system 

using an entropic measure. 

− Karp e R. Ronen [22]: the objective of the study is to demonstrate by the use of an entropic 

equation, that the smaller production lots requires less efforts in the management of the 

production system because the system requires a smaller quantity of information. 

− D. D. Yao [23]: this study examines the “dynamic parts routing” inside the FMS (Flexible 

Manufacturing Systems). In order to measure the flexibility, the author develops an entropic-

based measure combining the characteristics of the equipments and the characteristics of the 

systems which contribute in the flexibility of the routing. 

− V. Kumar [24]: this research attempt to develop some measures of flexibility; an entropic 

measure of flexibility is developed. 

− G. Allon, D. P. Kroese, T. Raviv, R. Y. Rubinstein [25]: the authors propose an optimization 

algorithm based on an entropic formula in order to solve the problem of buffer allocation 

inside a production system. 

− Nam P. Suh [26]: this approach aims to measure the complexity in the design. The study is 

based on a technique of the Axiomatic Design in order to succeed to calculate the 

probabilities that a functionality of the product is defined in a satisfactory way from the 
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design parameters; in particular, this entropic measure has been used in order to define a 

complexity index. 

− Janow [27]:  the author aims to extend the use of some elements of the information theory 

(like the maximum transmission capacity of a channel) together with the Shannon entropic 

measure. The goal is the explanation of the behaviour of the large organizations, in which 

the nodes (persons) through which the information pass are numerous. 

− R. Johnston [28]: the author uses an entropic formula in order to demonstrate that the 

impossibility to satisfy the market by using unitary production lots generates the minimum 

level of costs that are not dismissible. 

  
Figure 2: Classification of Entropic Measurements 

The proposed classification of entropic measures in the production management 

In order to give homogeneity and simplicity, the proposed classification of the entropic measures 

considers only those measures that refer to a productive context (figure 3). The selected variables 

for the classification are tasks of the studies and the objects of the mathematical formulation. 

The fundamental objective at the base of the study influences the type of developed index. As an 

example, although the existing classifications indicate the measure of Yao [23] like one measure of 

complexity, we consider that it is a measure of flexibility used in order to take decisions in real time 

in a FMS when the lots advance. 

 The considered tasks are: 

− Complexity, defined as the quantity of information necessary to describe the system. The 

research of Frizelle [21] and Deshmukh [20] explicitly regard the study of the complexity of  

production system. 

− Lot sizing: the research focus is to demonstrate that the smaller production lots requires less 

efforts in the management of the production system because the system requires a smaller 

quantity of information. 

− Flexibility: two main entropic-based measures of complexity regarding the flexibility has 

been highlighted: 

o Kumar [29] simply aims to develop a measure able to quantify the flexibility of a 

production system. 
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o Yao [23] inserts his own measure of flexibility inside a methodology that can be 

used for the production plan in order to take decisions in real time. 

− Buffer allocation: the authors use an entropic formula inside an algorithm of optimization for 

the buffer allocation. 

 
 

 

Figure 3: Classification of Entropic Measurements in Production Management 
 

The parameters of the mathematical formulation represent the nature of the variables which 

appear in the proposed formulations. In particular they can be distinguished: 

− State of resources: 

o Frizelle [30] recognizes that the most important point of view for a production 

system is the dynamic complexity and considers the system composed by the 

machine and its queue as a resource. The studied state is the queue level. 

o Deshmukh [20] defines a measure of static complexity that is a function of the 

requirements components’ processes to produce and the equipments 

characteristics. 

− Karp and Ronen [22] define an entropic measure that is function of parameters like the 

number of stations of the production line, the number of codes that must be produced for a 

certain product, the number of codes for lot, the number of lots and the relationship between 

the gross time of production (calculated as working time + queue time in buffer of the 

finished products) and the time (only process lead time) in the case the entire quantity is 

produced in a single lot. 

− Structure of operations in production: 

o Kumar [29] considers the probability that a production is realized in a determined 

working station. 

o Yao [23] considers the probability that a prodution is realized in one determined 

working station considering also the probability that the machines used for 

successive operations could be out of order. 

− G. Allon et al. [25] elaborate an entropic formula function of a sequence of accidental 

sampling (on the states of n machines) and the probability distribution of an accidental 

sampling (on the states of n the machines) function of a performance parameter. 
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3. The job-shop production system as a complex system 

The fragmentation of the market and a wider push from part of the companies to an high 

customization of the product force firms to propose a wide and more differentiated range of 

product; in particular, the phenomenon that has pushed the companies to make the manufacturing 

planning and control system more complex is the so called mass customization [30]. In fact, the 

mass customization foresees an increase of the product variety. This variety growth aims to satisfy 

the requirements of the greatest number of customers but it corresponds to an increase of the 

number of codes and processes that a firm has to manage. The companies try to determine the right 

level of variety that they should have to offer to the market in order to optimize the profits [31]. 

In this context, many products do not have a sufficient market demand in order to justify the 

creation of a production line that is instead a production system more correct for products barely 

differentiated and with high volumes. The answer to different needs, corresponding to product with 

low market demand and which requires variations in short times, is given by the job-shop 

production system. 

The complexity that comes from the variety is caused by the uncertainty generated by the 

interaction of the variety along the time making unforeseeable the behaviour of the production 

systems [30]. The present work focuses on the process of management and manufacturing planning 

in the job-shop production system. 

In this type of plant the lay-out is defined by areas (functional units) in which homogenous 

machines are grouped in accordance with the function and operations carried out. In this type of 

process, a “shop” of a manufacturing firm can contain for example lathes, presses or machines for 

tests (see figure 4). Parts of a product assigned to the same work centre can demand the same type 

of production with different setups. A job-shop production system is designed above all for a 

particular category of products: the assembly components; very often these are objects that are 

assigned to the successive phase of assembly in order to obtain the finished product; the range of 

different component that can be obtained is very large [32]. 

The material flows generated by manufacturing operations is very articulated; therefore, it’s 

necessary an elevated capability to process the informative flow, in order to coordinate the 

production flows and control the work in progress. The informative flow constitutes a crucial point 

of the production system. 

Manufacturing control and information flow management are strongly linked to the raw 

materials management, stocks management and operations scheduling. In fact, the controller needs 

the information about the manufacturing plan, the stocks levels, the labour capability, the advancing 

state of the job order and to their completion times, in order to allow the managers to formulate the 

production scheduling and to face problems which can rise from its application [33]. 

The manager needs information regarding the manufacturing requirements of every job: the 

delivery date, its position inside the production system, the working times, the queue time, the set-

up times, the raw materials necessary to produce the demanded product, etc. All these information 

together with to the priority rules, are used to estimate the times of arrival to the successive work 

centre and to foresee possible material requirements in the warehouse [6] 

 The empirical study realized concerns a manufacturing firm with job-shop production system 

without orders scheduling. With reference to the formulation proposed by Frizelle [30] the study 

has been articulated in two phases: 

− Estimation and analysis of the indexes of static complexity in a production unit (shop); 

− Estimation and analysis of the indexes of dynamic complexity in a work centre and 

simulation of alternative scenarios through a Business Dynamics approach. 
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Figure 4: Production flows in a Job-Shop manufacturing system 

 

The originality of the proposed study is in the use of complexity indexes through the System 

Dynamics approach. The analysis has been conducted using the data collected during the year 2004 

integrated with random repeated observations. The difference between the approach suggested by 

Frizelle [30] and Calinescu et al [15] and this research refers to a production system in which the 

scheduling plan is not carried out. Therefore, it’s necessary to carry out a series of adjustments to 

the methodology elaborated by Calinescu [15]. 

Static Complexity index 

The static complexity starts from the competition between products and resources; it is an index 

that represents the potentiality inside the structure to cause operative critical states. The Static 

Complexity index [30] is associated to the system variety linked to the planned state. The 

mathematical formulation is the following: 

 

∑∑
= =

⋅−=
M

j

ij

N

i

ijstatic ppSH
1 1

2
log)(

 

where M is the number of resources (that is the number of machinery, equipments), N represents 

the number of possible states the resource j can be found and pij is the probability that the resource j 

is found in the state i [15]. The authors define “planned state” the association between the product i 

and the resource j which will work according to the scheduled plan. 

In the case study carried out the company doesn’t schedule, so the indexes has been calculated 

using the consumptive data related to the working times of the products on the different machines 

present in the company database about year 2004. In fact, static index of complexity can interpreted 

as a representation on the resources by different products. In accordance with the assertion by 

Frizelle [30] and Calinescu et al [15] these resources are those that potentially could be more critical 

to manage. 

For every resource the time committed by every product has been calculated and then we 

determined pij as the ratio between the time within the product has committed the resource j divided 

to the total time in which the resource has worked during the year. 
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Static complexity index has allowed to identify the most saturated work centre, characterized by 

the biggest indexes. In reference with this particular application, the static complexity index hasn’t 

provided any additional information, compared with a traditional index. 

Dynamic complexity index 

Dynamic complexity studies manufacturing operations’ behaviour; it represents the quantity of 

information necessary to describe the state of the system when it diverges from planned states. It 

can be calculated through the study of queuing behaviour [15], using the formula: 

ijij

NSj

M

i

D ppPPPPPH
i

log)1()1log()1(log
1

∑∑
∈=

−−−−−−=  

Where P is the probability of the system to be in a planned state (as described in system’s 

schedule), while pij is the probability of the resource j to be in an “out of control state” i. 

Literature’s case studies ([34], [30]), always considered companies which used schedule 

software; in this way, it was always possible to know if planned state had been observed. 

Resource’s state depends of the deviation between actual and scheduled state. In this way, work 

centre queues were observed through an indirect way, because it is supposed that a machine doesn’t 

work what has been planned because of the unplanned behaviour of system’s queues. In summary, 

the required data for index calculation are collected with precision, and researcher’s subjectivity 

affects only states definition [35]. It is suggested [35] to group states in ranges depending of the 

“seriousness” of the gap between actual and scheduled state, where “seriousness” is the distance 

from the planned state of the resource. In this way it is possible to determine the “in control” and 

“out of control” states and calculate the indexes, which can be compared each other [35]. 

In this case study the production is not scheduled, so it is hard to determine in which way a 

resource is in a control or out of control state. This is why it is impossible to determine only one 

group of states which is the same for all resources and it is impossible to give only one definition of 

“in control”. So, it has been necessary to adapt the approach we described before to study dynamic 

complexity in this case study. 

The manufacturing system considered in this case study is a job-shop, so there is the typical 

problem of the trade-off between a saturation level which allows utilizing machines at best and a 

queue which doesn’t extend lead time too much. The queue is the total quantity of work, expressed 

as standard hours, which lays in every moment by the work centre, waiting for being manufactured. 

The aim of the queue is to decouple work centres which have different cadence or lots with 

different routes (fig. 4). In job-shop manufacturing systems queue times plus moving times usually 

reach even 90% of system’s manufacturing lead time. The research for the right trade-off between 

queue time and saturation aims to reduce at most queue without reducing productivity. Queues 

reduction implies shorter lead times and so an higher flexibility to react very quickly to market’s 

demand. 

The adaptation of the quoted approach wants to describe, for each resource, the behaviour: 

− Saturation: the saturation curve will raises as the queue raises, till it will reach an asymptote 

which corresponds with the higher saturation level the resource may reach. 

− Number of parts in queue: the number of parts is directly proportional with the queue time, if 

we consider a multiplicative constant which corresponds to the parts’ manufacturing time. 

The two curves will depend of the mean number of parts’ arrival by the machine, called the 

system’s input or simply input. The aim of the model is to observe the course of the two curves and 

the dynamic complexity index as the input varies. The advantage coming from simulation lays in 

the possibility to study conditions which will never be reached in reality. 
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The model 

Now it will be described the Business Dynamics simulation model developed (Powersim® 

simulation software), which aims to reproduce the functioning of work centre. The study is based 

on the same criteria for each work centre, so it will be sufficient to describe the process and the 

results for only one work centre. 

The model simulates the mean daily number of parts arrivals by the examined work centre and 

its manufacturing cadence. The fundamental parameters of the simulation have been calculated 

from firm’s database; year 2004 data have been considered, and they are: 

− Input level: the number of incoming parts varies within a fixed range, which has been 

calculated from historical data. 

− Starting queue: its value is equal to the queue mean value which has been learnt through 

repeated random observations made for each work centre. 

− Cadence: the mean of each work centre has been calculated through the 2004 data of the 

firm’s database. The mean cadence varies in a fixed range which depends of unpredicted 

situations as machine breakdowns or failures. Moreover, cadences depend of the 

manufactured part and it results from the different manufacturing times. 

Figure 5 schematically shows what we explained. The model aims to reproduce the queuing 

behaviour of the parts in work centre’s buffer and it considers work centre’s different operating 

conditions. Two models with different priority rules have been developed:   

− FIFO rule (First In, First Out): the first part arriving will be manufactured first; 

− Lots’ joining rule: parts may be manufactured only when queues reach a dimension equal to 

manufacturing lot of the machine. 

Coda 

Macchina

INPUT Cadenza

 

Figure 5: Simplified work centre model 

As we told before, unlike literature’s case studies, our data were referred to a firm which doesn’t 

schedule. Therefore it has been necessary to adapt the state definition procedure described by [35]. 

A sequence of simulations was performed to obtain a reference queue level. In this way the 

curves of queue and saturation had been obtained in function of system’s input. It allowed us to the 

queue level which corresponds to an optimal, or reference, functioning of every work centre. 

The work centre queue level found has been utilized to define the “in control” state of the work 

centre. So, the state definition can be expressed in this way: 

− In Control state: it is defined as an neighborhood of the reference queue level which had been 

calculated before; 

− Not In Control states: we determined four out of control states with growing seriousness. 

They correspond to superior or inferior queue ranges respect to the reference queue state. For 

example, the out of control state 1 corresponds to a state which is few different from the 

reference state, corresponding to queue levels few higher or few lower than the optimal ones. 
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After the state definition, the complexity index has been calculated. For this purpose, a sequence 

of one year lasting simulations has been conducted for growing input levels. Simulations had been 

repeated for every input level in order to lower the dependence upon random variations of input and 

manufacturing cadence. The following values have been calculated for every simulation day: 

− Mean queue: it is calculated on the entire simulation year; 

− Saturation: it is calculated from the ratio between the parts manufactured during the 

simulation day (mean manufacturing cadence of the machine) and the maximum number of 

parts the machine can manufacture (“maximum” manufacturing cadence of the machine). 

Probabilities P (probability of the resource to be in control, e.g. the queue is in the settled range) 

and pi (i = 1,…,4 out of control states) have been obtained calculating the number of parts in the 

queue for every simulation day. So, it have been possible to count the number of days when the 

resource was in a determined state and then it has been obtained the probability of every state 

divided by the number of the simulation’s days. The results for the FIFO rule are represented in Fig. 

6 a and b. 

 

Figure 6a: Saturation and Queue Time in function of the input level 

 

It is possible to see that complexity index curve is not increasing monotonic function. So, the 

index may have the same value for different input levels.  

The dynamic complexity index curve has a maximum value for an input value equal to I*. If we 

use a managerial perspective, this value corresponds to the input level which is the most difficult to 

manage because it requests the higher quantity of information. At the same time, it is the most 

interesting if we consider the profitability of the work centre. In fact, in this situation the firm 

pursues the aim of reducing lead time, although maintaining a good saturation level. Consequently, 

the system is maximally complex because it has to satisfy opposite aims. If we consider the 

dynamical complexity index, it is possible to individuate three areas of the curve:  

− Input levels inferior to I*: The resource has a low queue level, so it has a low complexity 

index because the out of control states it assumes vary in a strict group. On the other hand, 

the resource has low saturation, so it is possible to suppose a not optimal utilization of the 

machine. A firm which places itself in this zone has as main target the lead time reduction. 

− Input levels superior to I*: The resource has a high queue level, so it has a low complexity 

index because it is out of control for the most of the time. Saturation is high and the machine 

has always available a parts buffer to be manufactured, minimizing inactivity time. A firm 

which places itself in this zone has as main target the saturation increase. 

− Input levels close to I* (Edge of chaos): The firm looks for a queue level which allows it to 

satisfy opposite targets of lead time reduction and inactivity time decrease. A firm which 
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places itself in this zone has a double target (e.g. optimizing manufacturing lead time and 

machines saturation).  

So the highest complexity index area appears as the most difficult zone to manage (managerially 

complex), but also as the most fruitful. 

 
 

Figure 6b: Dynamic complex index in function of  the input level 

 

 

 
 

Figure 7: Dynamic complex index in function of  the input level with two levels of input range (+/-25 e +/-15) 

Creating an alternative scenario 

The alternative scenario represents a firm which exercises a higher control on its manufacturing 

flows. As a consequence of a higher control, with the same manufacturing cadence, it was supposed 

that the input level would have a lower daily variation. 

As in the first study, we made groups of 12 simulations for every growing input level. In this 

way it was possible to determine the new curve of the complexity index. 

If we consider simulation results (fig. 7), we can see that the complexity index still have a 

maximum value for an input level equal to I’*. The maximum value of this scenario is anyway 

inferior to the maximum value obtained in the first study (higher input variation). Consequently, it 

is possible to agree with the statement that dynamic complexity can be managed with an higher 

control on manufacturing flows [30]. 
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4. Conclusions 

The literature review has drawn the attention to different methodologies available to measure 

complexity. In a theoretical perspective we classified the measures according to two dimensions: 

the object of the measure (deterministic or statistical complexity) and the approach (Computation or 

Information Theory). With reference to a manufacturing setting the framework proposed 

characterize different entropic measures according with two variables: tasks (complexity, lot sizing, 

flexibility or buffer allocation) and objects (resources state, number of products, production time, 

structure of production operations, demanded performance or equipment state). 

Two indexes have been selected from this framework (static and dynamic complexity index) due 

to their consistency to a manufacturing setting. These indexes have been adapted to a job shop plant 

without schedule. 

A Business Dynamic approach allowed to analyze the trend of the dynamic complexity index as 

regards to different operating conditions. The dynamic index was studied not only according to the 

empirical data, but also assuming supposed scenarios with different levels and range of inputs. 

Furthermore, the dynamic index was compared to “traditional” indexes as the queue time and the 

capacity saturation percentage. 

In particular, the level of input for the peak of the dynamic index has interpreted according to the 

theoretical knowledge highlighted in the literature review after we shared the results with the 

practitioners in the company. 

The comparison between the curve obtained and the saturation and queue indexes corroborated 

that the peak of the dynamic index corresponds with the trade off between flexibility and efficiency 

of the work centre studied. Moreover, this peak coincides to the edge of chaos, characterized by the 

maximum managerial complexity. Metaphorical speaking, the behavior of the dynamic complexity 

index may be described as following: if we move to the left section of the diagram (fig. 060b) 

(Input < I*) the capacity is unsaturated and the work center “dies of thirst”; On the contrary, if we 

move to the right section of the diagram, the capacity is saturated, the queues increase and the work 

center drowns. 

The main limit of this approach regards the impossibility to compare directly complexity indexes 

of different work center. As a matter of fact, if the company schedules, we can imagine that the 

planned state is the optimal one. In the case studied, the “in control” and “not in control” were 

different for every work center. 

In other words, the computed indexes are stand alone for each work center. For instance, if the 

complexity index is 1.5 for a particular system (work center, equipment, etc.) rather than 2.0, it 

doesn’t make nay sense. 

It would be deliverable to identify a normalized complexity measure in order to compare 

different systems or work centers. The normalization could spring from the maximum level of 

complexity sustainable. According to Frizelle [30], this level of complexity coincides to the 

maximum complexity manageable for the organization 

In this reference, if the complexity index is 1.5 for a particular system (work center, equipment, 

etc.) and the maximum sustainable complexity index is 2.0, it means that the organization needs 

further information in order to reach the optimal configuration. 
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