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ABSTRACT

Generally the safety stock is maintained constant and it is not changed within the planning
horizon to follow any demand pattern, in particular the seasonal one. The authors wonder
about the correctness of such an approach and thus examine the adoption of dynamic versus
static safety stocks.

Two static rules, based on shortage occurrences and service level respectively, and two
dynamic ones (the periods of supply rule and a new method proposed by the authors) are
compared and products with stationary, linear trend and seasonal demand patterns are
involved in the analysis. Simulation experiments are performed. Results clearly show how
static rules get better performances than the dynamic ones even in the seasonal case.

1. INTRODUCTION

It is a common practice to keep safety stocks constant and not to change them within the
planning horizon to follow any demand pattern, in particular the seasonal one.

The authors wonder about the correctness of such an approach; therefore they try to analyse
the adoption of dynamic versus static safety stocks.

Brown (1967) considered three different rules to determine safety stocks. In particular:

1. safety stock as periods of supply:

SS=P.d (1)

where P is the number of periods of supply to be covered and d the forecast level of
demand per period;

2. safety stock as the product of a safety factor Z* and the standard deviation &y, of the error in
forecasting the total demand in a lead time:

*

SS=7"-0, )

The safety factor corresponds to the specified chance a. that no shortage occurs before the
next shipment arrives into stock, so that F(Z") = 1 - o, where F is the probability function
of the normalised variable Z = (Ep - p.)/0L, being E, the forecast error and L, the forecast
error mean ;

3. safety stock as a function of a desired level of service LS, meaning the probability of
filling the order. Safety stock can still be determined by relation (2), but in this case Z'is
evaluated as:
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B(Z')=(1-L8) — G)
c;L
where E is the partial expectation, so that 6.-E(Z") expresses the expected quantity back
ordered when a shortage occurs, and Q is the order quantity.
The first rule can be regarded as a dynamic sizing of the safety stock, because demand level
pattern is followed, while the last two methods can be considered as a static way of
determining safety stocks. ‘
Brown suggested that at an aggregate level, when a whole set of products has to be managed
by a company, the third rule performs better, so that a static approach should properly be
considered.
We want to deeply analyse the behaviour of an inventory system under different safety stock
rules to improve our understanding of dynamic versus static method performances.
Therefore we consider the three "classic" rules described above and a new dynamic rule
proposed in the following section.

2. ANEW DYNAMIC RULE

The first rule proposed by Brown, based on periods of supply to be covered, has no direct
links with the forecast error a safety stock has to protect against.
Also, it provides no direct relations with the service level offered to customers, the most
common performance measure used to analyse inventory systems.
Since our aim is to get a better insight into the behaviour of dynamic versus static rules, we
propose another way to dynamically determine safety stocks related both to the forecast error
and service level. Our intent is to avoid that the intrinsic limitations of the first rule could
distort the comparison between the dynamic/static nature of safety stock sizing.
We propose the following dynamic rule:

. d
SS=7Z -0, =N “)

m

where Z'is the safety factor for a given service level (see relation 3);
G, is the standard deviation of error in forecasting demand level during the lead time;

d is the forecast demand during a given period;
d,, is the average demand per period of the last year.

3. SIMULATION EXPERIMENTS

To analyse the different performances obtained with the four safety stock rules described

above, we simulated an inventory system managed with the TPOP (Time-Phased Order Point)

approach and a lot-for-lot sizing.

We were interested on evaluating the behaviour of the system when the four methods are used

to settle the safety stock for:

- a set of products with the same demand pattern, to evaluate if the goodness of different
sizing rules is affected by demand characteristics;

- a set of products with different demand patterns, so that the performances of the four
methods can be compared at an aggregate level. The decision variables (periods of supply,
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safety factor and service level for rule 1,2 and 3-4 respectively) take the same value for all
products.
For all products a demand history of 120 periods (10 years if one month periods are
considered) was generated, basing on the.following relations (Hax and Candea, 1984):
e stationary demand distribution

d=a+g o)
e demand with linear trend pattern.
d=a+bi+g (6)
e demand with seasonal pattern
d, =a+c-si (21:4)”' %
, =a+c-sin| ;
1 1 12 1
e demand with linear trend and seasonal pattern
. (2w
d,=a+b-i-c-sin +¢, ®)
12
where d; = demand in period i;
a = mean time-invariant demand, set to 1500 units;
¢ = random noise component in period i, normally distributed with zero mean and
a standard deviation G;
b = trend component;
¢ = seasonal component.

Values taken by the above parameters are shown in Table 1.

Tab.1 Values taken by demand distribution parameters

Demand pattern Number of O¢ b c
items
30 100
stationary 30 300 -
30 500
30-3=90 100 10, 30, 50
linear trend 30-3=90 300 10, 30, 50 -
30-3=90 500 10, 30, 50
30-3=90 100 150, 450, 750
seasonal 30-3=90 300 - 150, 450, 750
30-3=90 500 150, 450, 750
30-3-3=270 100 10, 30, 50 150, 450, 750
trend and seasonal 30-3-3=270 300 10, 30, 50 150, 450, 750
30-3-3=270 500 10, 30, 50 150, 450, 750

Since forecasting methodologies generally require a certain period of time for stabilisation, it
is reasonable to believe that the performances related to different safety stock sizing rules
could be affected by the amount of past data available. Preliminary runs showed that a a
stabilised condition is achieved in the simulated system after a 30 month period.

In this situation the following forecasting methods were used (Tersine, 1988):

a. moving average including 6 periods for stationary demand products;
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b. exponentially weighted moving average (0=0,2) with. trend correction (B=0,1) for demand
with linear trend pattern;

c. exponentially weighted moving average (0=0,2) with seasonal correction (y=0,1) for
demand with seasonal pattern; .

d. exponentially weighted moving average (0=0,2) with trend correction (B=0,1) and
seasonal correction (y=0,1), for demand with both trend and seasonal pattern.

We decided to study not only the behaviour of the four sizing rules in a stabilised condition,

but also during the first three years, i.e. a typical nowadays product life cycle, and the first

year of product life, when a very unstable condition has to be faced.

To analyse if the replenishment lead time affects simulation results, three values were

considered for all runs equal to 1, 2, and 3 months.

4. RESULTS

The performance measures considered to compare the four rules for safety stock sizing are the
actual service level (ASL) and the inventory turnover rate (ITR).

For each group of 30 items with the same demand distribution (i.e. same pattern and
parameters, as shown in Table 1) simulation experiments for 10 different values of decision
variables of the four sizing rules were computed. Simulation experiments were also taken
grouping all items with different parameters but same demand and finally at an even more
aggregate level items with the three main demand patterns (i.e. stationary, linear trend and
seasonal) were considered together.

In the following figures 1-4 the behaviour of the four safety stock rules for groups of items
with the same demand pattern in a stabilised condition and with one month lead times are
shown. The third rule, where safety factor is based on service level (see relation 3), gains the
best results at this level of aggregation. The four rule performances are similar to the third
ones, except when demand has a seasonal pattern: in this case, in fact, both the dynamic
sizing rules perform worse than the static ones (see Figure 3).

Stationary demand Linear trend demand
100,0% 100,0%
98,0% 99,0%
96,0% p
6.0% ~m~ Ruke 1 98,0% e
—®—Ruke 2 Ry
—e—Rul
94,0% 4 —&—Ruk 3 97.0%
Ruke 4 —a—Rule 3
ASL ASL Rule 4
92,0% 96.0%
90,0% 95,0%
88,0% 94,0%
05 070 0% 110 1,30 150 1L70 1,9 1,00 1,20 1,40 1,60 1,80 2,00
ITR ITR

Fig.1 Simulation results for items with stationary Fig. 2 Simulation results for items with linear trend
demand pattern in a stabilised condition demand pattern in a stabilised condition
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Seasonal demand Linear trend and seasonal demand
100,0% 100,0%
99,0%
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—&—Rule 1 97,0% 1 —#—Ruk 1
96,0% —e—Rule 2 ~—®—Rule 2
L 950% —a—Rule3 96.0% —a—Ruke 3
—o—Rule 4 —o—Rulke 4
94,0% ASL”"H’
93,0% 94,0%
92,0% 930%
91,0% 92,0% 1
90,0% 91,0%
0,50 0,70 0,90 L10 130 1,50 0,50 0,70 0,90 110 1,30 1.50 1,70
ITR ITR

Fig. 3 Simulation results for items with seasonal Fig. 4 Simulation results for items with both a linear
demand pattern in a stabilised condition trend and seasonal demand pattern in a
stabilised condition

The first rule, based on periods of supply to be covered (see relation 2), performs worse than
the others for all demand patterns (see Figure 1, 2, 3, and 4).

At a more detailed level (i.e. when items with the same parameters of demand distribution are
considered) experiments show how the periods of supply rule gets worse and worse with
noise component increasing and how the second rule performs better than the third when a
seasonal pattern is analysed.

When items with a different demand pattern are instead involved in the same simulation runs
the service level static rule gets the best performances, attesting Brown’s assertions, followed
by the new dynamic rule, the shortage occurrence rule and finally the period of supply rule, as
can be seen in Figure 5, where results at the most aggregate level are proposed.

From simulation experiments no relations between the replenishment lead time and the
relative performances of safety stock sizing rules were recognised, as can be seen comparing
figures 5-7.

Aggregate level with LT =1 Aggregate level with LT =2
1000%
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97.0%
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ITR ITR

Fig. 5 Simulation results at aggregate level when a Fig. 6 Simulation results at aggregate level when a
Lead Time of one month is considered Lead Time of two months is considered
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Aggregate level with LT = . .
ggregatellevelwith LT.=3 . Aggregate level with LT =1 in the first year
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Fig. 7 Simulation results at aggregate level when a Fig. 8 Simulation results at aggregate level with a one
Lead Time of three months is considered month lead time in the first year of product life

Moving towards more unstable conditions, the difference on performances gained by the four
safety stock sizing rules becomes less remarkable (see fig. 8). When a three and one year
period are considered, results are similar to those obtained in a stabilised configuration,
except that the shortage chance method is better then the service level one for products with a
trend demand pattern.

5. CONCLUSIONS

The dynamic sizing method proposed in section 2 doesn’t improve system performances as it
might be expected; in fact the service level static rule, from which the fourth rule was
derived, often gets better results. Thus it looks not worth while including a demand level
factor when defining safety stocks.

The worse behaviour of dynamic rules becomes clear especially when analysing a seasonal
demand pattern, where major improvements were expected; in this case in fact both the static
rule overcome the dynamic ones. Therefore when establishing mechanisms to protect a firm
against market uncertainty, it is not correct to make safety stocks variable during the planning
horizon, trying to adapt them to demand pattern. If safety stocks, in fact, have to preserve a
company from the risk related to the forecasting process, then they depend on the forecast
error and thus on the ability of the chosen forecast methodology to follow actual demand
patterns rather than on demand level in the replenishment lead time.
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